False name manipulations in weighted voting games: splitting, merging and annexation
نویسندگان
چکیده
An important aspect of mechanism design in social choice protocols and multiagent systems is to discourage insincere and manipulative behaviour. We examine the computational complexity of false-name manipulation in weighted voting games which are an important class of coalitional voting games. Weighted voting games have received increased interest in the multiagent community due to their compact representation and ability to model coalitional formation scenarios. Bachrach and Elkind in their AAMAS 2008 paper examined divide and conquer false-name manipulation in weighted voting games from the point of view of Shapley-Shubik index. We analyse the corresponding case of the Banzhaf index and check how much the Banzhaf index of a player increases or decreases if it splits up into sub-players. A pseudo-polynomial algorithm to find the optimal split is also provided. Bachrach and Elkind also mentioned manipulation via merging as an open problem. In the paper, we examine the cases where a player annexes other players or merges with them to increase their Banzhaf index or Shapley-Shubik index payoff. We characterize the computational complexity of such manipulations and provide limits to the manipulation. The annexation non-monotonicity paradox is also discovered in the case of the Banzhaf index. The results give insight into coalition formation and manipulation.
منابع مشابه
False-Name Manipulations in Weighted Voting Games
Weighted voting is a classic model of cooperation among agents in decision-making domains. In such games, each player has a weight, and a coalition of players wins the game if its total weight meets or exceeds a given quota. A player’s power in such games is usually not directly proportional to his weight, and is measured by a power index, the most prominent among which are the Shapley–Shubik i...
متن کاملAnnexations and Merging in Weighted Voting Games - The Extent of Susceptibility of Power Indices
This paper discusses weighted voting games and two methods of manipulating those games, called annexation and merging. These manipulations allow either an agent, called an annexer to take over the voting weights of some other agents in the game, or the coming together of some agents to form a bloc of manipulators to have more power over the outcomes of the games. We evaluate the extent of susce...
متن کاملManipulation of Weighted Voting Games and the Effect of Quota
The Shapley-Shubik, Banzhaf, and Deegan-Packel indices are three prominent power indices for measuring voters’ power in weighted voting games. We consider two methods of manipulating weighted voting games, called annexation and merging. These manipulations allow either an agent, called an annexer to take over the voting weights of some other agents, or the coming together of some agents to form...
متن کاملFalse-Name Manipulation in Weighted Voting Games Is Hard for Probabilistic Polynomial Time
False-name manipulation refers to the question of whether a player in a weighted voting game can increase her power by splitting into several players and distributing her weight among these false identities. Analogously to this splitting problem, the beneficial merging problem asks whether a coalition of players can increase their power in a weighted voting game by merging their weights. Aziz e...
متن کاملFalse Name Manipulations in Weighted Voting Games: Susceptibility of Power Indices
The splitting of weights into smaller sizes by agents in a weighted voting game and the distribution of the new weights among several false identities with the intent of payoff or power increase in a new game consisting of the original agents as well as the false identities is called false name manipulation. In this paper, we study false name manipulations in weighted voting games focusing on t...
متن کامل